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Abstract
We present a general approach for the decomposi-
tion of games described in the Game Description
Language (GDL). In the field of General Game
Playing, the exploration of games described in
GDL can be significantly sped up by the decom-
position of the problem in sub-problems analyzed
separately. Our program can decompose game de-
scriptions with any number of players while ad-
dressing the problem of joint moves. This approach
is used to identify perfectly separable sub-games
but can also decompose serial games composed of
two subgames and games with compound moves
while avoiding, unlike previous works, to rely on
syntactic elements that can be eliminated by sim-
ply rewriting the GDL rules. We tested our pro-
gram on 40 games, compound or not, and we can
decompose 32 of them successfully in less than 5
seconds.

1 Introduction
Despite incentives from [Genesereth and Björnsson, 2013] to
encourage the development of GGP players able to discern
structure of compound games and therefore to dramatically
decrease search cost, very little research exists in this area.

[Cox et al., 2009] prove conditions under which a global
game represents multiple, simultaneous independent sub-
games, but the practical implementation of a GGP player us-
ing decomposition presents two major issues: the first is to
detect and decompose a compound game, the second is to
combine local subgame solutions into a global one.

[Cerexhe et al., 2014] provide a systematic approach for
single player games to solve this second difficulty which they
refer to as the composition problem. However, identifying
and decomposing games is not within the scope of their paper.

[Günther, 2007; Günther et al., 2009] propose a decom-
position approach for single player games by building a de-
pendency graph between fluents and actions: the connected
parts of the graph represent the different subgames. Potential
preconditions, positive and negative effects between fluents
and actions are used to build this dependency graph while
action-independent fluents are isolated in a separate subgame
to prevent them from blocking the decomposition.

[Zhao et al., 2009; Zhao, 2009] propose a similar approach
for multiplayer games using partially instantiated fluent and
action terms. Serial games and games with compound actions
are handled separately.

These approaches present different shortcoming we will
details below such as an heavy reliance on certain syntactic
structures in game descriptions.

We propose a more general approach to decompose games
with any number of players while addressing the problem of
joint moves, compound moves and serial games without re-
lying on syntactic elements that can be eliminated by simply
rewriting the GDL rules. The result of our decomposition
can be used to solve the game by an approach like the one of
[Cerexhe et al., 2014] ; it is a non-trivial problem outside the
scope of this paper.

We begin (§2) with a brief introduction of the Game De-
scription Language and the different types of compound
games that can be found on the different online servers and
that our approach can decompose. Then we present the dif-
ferent aspects of our method to handle these different types
of games (§3). We present results on 40 games, compound or
not (§4). Finally, we conclude and present future work (§5).

2 Preliminaries
We present here some details about the Game Description
Language and the different types of compound games that
our approach can decompose.

2.1 The Game Description Language
We assume familiarity of the reader with the General Game
Playing [Genesereth et al., 2005] as well as with the Game
Description Language (GDL) [Love et al., 2008]. A GDL
game description takes the form of a set of assertions and
of logical rules which conclusion describes: the transition to
the next position (next predicate); the legality of actions (le-
gal); the game termination (terminal); and the score (goal).
The rules are expressed in terms of actions (does) and fluents
(true) describing the game state.

Rule premises can also include auxiliary predicates, spe-
cific to the game description itself, which truth is defined by
rules also using true and does premises. In the rest of this
article, we will refer to auxiliary predicates, exclusively de-
fined in terms of fluents (true) (does never appear in their
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premises), which have an important role in our decomposi-
tion approach (§3.3, §3.5).

2.2 Types of compound games
Among games available on the different General Game Play-
ing servers (http://games.ggp.org). different types of
compound games can be identified. The types we distin-
guish represent specific issues for the decomposition and are
not directly related to the formal classification proposed by
[Cerexhe et al., 2014].

For example, Parallel games like Dual Connect 4 or Dou-
ble Tictactoe Dengji are composed of two subgames played
in parallel that can be synchronous or asynchronous, but this
difference has no influence on the decomposition approach to
use. Decomposing these games do not present any particular
difficulty.

However, in some synchronous parallel games like Aster-
oids Parallel each player’s action is a compound moves cor-
responding to two simultaneous actions played in each sub-
games. These create a strong connection between subgames
and represent a specific difficulty for decomposition.

Serial games like Blocker Serial are composed of two se-
quential subgames i.e. the second starts when the first is com-
pleted. As the two games are linked together, identifying the
boundary between them is a specific issue for decomposition.

Multiple games like Multiple Buttons And Lights are com-
posed of several subgames, only one of them being involved
in the score calculation or the game termination. The other
subgames only increase the size of the game tree to explore.
Identifying those useless subgames allows to avoid unneces-
sary calculations. Note that in the game Incredible, contem-
plate actions are detected as noop actions by our decomposi-
tion program and does not constitute a useless subgame.

Games using a stepper to ensure finite games like
Eight Puzzle may be considered as compound games (syn-
chronous). In these games, different descriptions of a posi-
tion can vary only by the value of the stepper (step counter).
To allow a programmed player to exploit these near-perfect
transpositions, it is necessary to operate a game decomposi-
tion to separate the stepper from the game itself. This stepper
is then an action independent subgame.

Some impartial games, like Nim starting with several piles
of objects, may also be considered as compounds games
(asynchronous) as they can be decomposed in several sub-
games, one for each pile, each of them being an impartial
game [Zhao, 2009]. Identifying that these subgames are im-
partial, subsequently allows to use known techniques for the
resolution of the global game.

3 Method
Our approach is based on the [Günther, 2007] idea and con-
sists in using a dependency graph between actions and flu-
ents, and then to identify the connected parts of the graph
representing the subgames. As nothing in the GDL specifica-
tion prohibits the use of completely instantiated rules or pre-
vents that fluents or actions be reduced to simple atoms, we
identify relations between totally instantiated fluents f and
actions a and rely neither on their predicates names nor their
arguments.

For the analysis of these relations, we use the following
definitions:
Definition 1 Let F be the set of all the instantiated fluents f
appearing in true( f ) or ¬true( f ).

Definition 2 R being the set of all the roles r and O the set of
all options o of these roles, let A ⊂ R × O be the set of all the
instantiated player actions a = (r, o).
Or is the set of all the possible options of role r.

Definition 3 Let C be the set of all the possible conjunc-
tions of atoms of the form true( f ), ¬true( f ), does(r, o) or
¬does(r, o) .

3.1 Grounding and creation of a logic circuit
To instantiate completely the rules (grounding), we carry out
a fast instantiation using Prolog with tabling [Vittaut and
Méhat, 2014] and use these instantiated rules to build a logic
circuit similar to a propnet [Schkufza et al., 2008]. Con-
clusions of legal, next, goal or teminal rules are the outputs
of the circuit and only depends on fluents (true) and actions
(does) at the inputs.

It is possible, according to the GDL specifications, to pro-
duce a description with fully developed rules using no auxil-
iary predicate at all. However, these predicates, like column1,
diagonal2 or game1over in Tictactoe, may be necessary for
some specific stages of our process of decomposition (§3.3,
§3.5). To ensure that these auxiliary predicates will be avail-
able even when not specified in the GDL description, we pro-
ceed to a factorization of the conjunctions, disjunctions and
use De Morgans laws to reduce the number of negations in
the circuit. As a perfect factorization is an NP-hard problem,
our program uses a greedy approach where the first common
factor is used. Factorization and application of De Morgans
laws are iterated until the circuit reaches a minimum size.

We identify the needed auxiliary predicates as these are
represented by internal logic gates of the circuit, depending
only on input fluents and representing important expressions
in the logic of the game i.e. these expressions are used several
times, several logic gates use their outputs.

After the factorization, the GDL description is a set of for-
mulas under disjunctive normal form of which atoms are flu-
ents, actions, and auxiliary predicates. In the following we
say that these formulas are under DNF form.

Other stages of the decomposition process need a descrip-
tion of the game under canonical form. By recursively re-
placing auxiliary predicates by their expression we obtain a
new set of formulas in disjunctive normal form describing
the same game where all the auxiliary predicates have been
eliminated. In the following we say that these formulas are
under DNFD form.

3.2 Building a dependency graph
To build our dependency graph and to identify the different
subgames, we start with a set of vertices which are the fully
instantiated actions and fluents. We then identify different
relations between these fluents and actions that we define be-
low. For each of these relations we add an edge between the
involved actions and fluents vertices. These relations corre-
spond to preconditions or effects of the actions.

http://games.ggp.org
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Unfortunately, GDL does not explicitly describe action ef-
fects unlike STRIPS or PDDL languages used for planning
domains. A fluent being false by default, an action present
in a next rule can have an effect or not. For example, let us
consider the legal actions does(r, a), does(r, b) and does(r, c),
in the rule next( f ) D ¬true( f ) ∧ (does(r, a) ∨ does(r, b)). a
and b have an effect if the rule means ”The cell will contain a
pawn if r does one of the 2 actions moving a pawn in it” and
c has an effect if it means ”the boat will sink if r does any-
thing else than action c (bailing)”. A similar example can be
found for any next rule with an action (in a negation or not)
and regardless of the value of the fluent f and its presence or
not in the rule premises.

It is thus possible to produce GDL descriptions in which
the actions present in a next rule body belong to another sub-
game than the fluent in the rule head. We can only address
this using heuristics similar to those of [Günther et al., 2009].

They propose to consider that an action a has a negative ef-
fect on a fluent f if this action does not keep the fluent true i.e.
if next( f ) does not contain true( f ) ∧ does(a) in its premises.
However in a game like Double Tictactoe, there is no rule like
this to indicates that actions of a subgame does not change the
value of the other subgame fluents. Consequently, fluents of a
subgame can be considered as negative effects of the second
subgame actions and the decomposition fails.

In our approach we use slightly different heuristics which
work well for existing composed games to find potential ef-
fects of actions:

Definition 4 The fluent f is a potential negative effect of the
action a = (r, o) if next( f ) under DNFD has a clause where
¬does(r, o) appears.

The fluent f is a potential positive effect of the action
a = (r, o) if next( f ) under DNFD has a clause containing
the does(r, o) literal and not containing the true( f ) literal.

In case of joint moves from several players, it is necessary
to identify if the action of each player is responsible of the ob-
served effect on the rule conclusion to avoid linking unrelated
action with the conclusion.

To solve this problem [Zhao et al., 2009] propose to com-
pare the arguments used in a next rule head with the ones used
in the moves (does). For example, in the following rule from
Blocker Serial, we can see that the action from crosser is the
only one that is likely to affect the conclusion:

next(cell2(XC,YC, crosser)) D
distinctcell(XC,YC, XB,YB)
∧ does(crosser,mark2(XC,YC))
∧ does(blocker,mark2(XB,YB)).

However, GDL specification allows to use completely in-
stantiated rules and simple atoms to represent fluents and
moves. For example, we can replace the previous rule by
some instantiated rules:
next( f ) D does(crosser, o1) ∧ does(blocker, o2).
next( f ) D does(crosser, o1) ∧ does(blocker, o3).
...
With fluents like f and moves like does(r, o), their approach
is no longer able to deal with joint moves.

To identify which action has an effect without relying on
syntactic elements, we compare, for each player, the different

actions used in conjunction with the same fluents and actions
of other players in the clauses of each next rule.

Suppose that next( f ) ← C f is in DNFD. Let us consider
a specific option o′ for player r′. We consider the set E(o′)
of the different options of the role r when r′ choose the o′
option:

E(o′) = { o ∈ Or | ∃c ∈ C f ,∃b ∈ C,
c = does(r, o) ∧ does(r′, o′) ∧ b }

We define E(o) the same way by exchanging the role of (r, o)
with (r′, o′).

If all the options of the r are present in conjunction with
the same action of r′: these options have probably no effect
i.e. the result is the same regardless of the option chosen. On
the contrary, if a single option of r is present, it is probably
responsible for the observed effect. We then use the following
heuristics:

Definition 5 The action a = (r, o) ∈ A is potentially respon-
sible for an effect on f if:
• card(E(o′)) = 1, or
• E(o′) ( Or and card(E(o)) , 1

For example, in the game BlockerSerial, the term
next(cell1(2, 3, crosser)) is true if blocker choose any option
but mark1(2, 3) and crosser choose the mark1(2, 3) option.
All the options of blocker are not represented but, as crosser
has a single possible option, its action is considered respon-
sible for the effect while actions of blocker are not linked to
the cell1(2, 3, crosser) fluent.

Even if this approach sometimes put aside actions re-
lated to the conclusion, we did not observe any over-
decomposition. At least one of the actions is indeed related to
the conclusion and edges between fluents and actions added
in the dependency graph to represent preconditions relations
are redundant with those added for effect relations.

Therefore a fluent is a potential effect of an action if this
action has a potential positive or negative effect on this fluent
and if this action is potentially responsible for this effect in
presence of joint moves. From the potential effect of actions
we can deduce fluents that are action-independent, such as
step or control fluents, and actions that are fluent-independent
such as noop actions:

Definition 6 A fluent f is action-independent if it is not the
potential effect of any action a.

An action a is fluent-independent if no fluent f is the po-
tential effect of this action.

Then we can identify fluents that are potential precondi-
tions of an action in the same subgame and create a link in
the graph between them:

Definition 7 The fluent f is a potential precondition in the
same subgame of the action a = (r, o) if:
• a is not fluent-independent, and
• f is not action-independent, and
• one of the two following conditions holds:

– legal(r, o) under DNFD has a clause where true( f )
or ¬true( f ) appears, or
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– it exist f ′ which is a potential effect of a, such
that next( f ′) under DNFD has a clause containing
does(r, o) ∧ true( f ) or does(r, o) ∧ ¬true( f ).

An action-independent fluent can be present in the
premises of all legal rules, it is then a precondition of all
actions but belongs to another subgame which is action-
independent.

3.3 Subgoal-predicates to fix over-decomposition
Edges between actions and fluent vertices corresponding to
preconditions or effects of these actions may not be sufficient
to connect all the elements of a subgame. For instance, in a
subgame like Tictactoe, an action has an effect on a cell and
the state of this cell is a precondition to this action. However,
no link exists through actions between fluents describing dif-
ferent cells.

In the game Double Tictactoe given as an example by
[Zhao et al., 2009] the auxiliary predicates line1/1 or line2/1
are present in the premises of some legal rules. All the fluents
in the premises of these predicates are then preconditions of
the corresponding actions and create a link between the cells
of each subgame. However, in games like Tictactoe Parallel,
Connect4 or Rainbow no such predicate is present in the legal
rules and an over-decomposition occurs.

The logic link between elements of a subgame is in the goal
to reach and this goal is usually a condition for the termina-
tion of the global game. We need to distinguish an auxiliary
predicate corresponding to a subgoal in one subgame from
one corresponding to different subgoals from different sub-
games because the second one can prevent the decomposition.
To address this problem of over-decomposition we use the
following heuristic to identify potential subgoal-predicates
corresponding to only one subgame:

Definition 8 Let g be the maximum possible score of r. An
auxiliary predicate b is a potential subgoal-predicate if:

• terminal depends on the logical value of b, and

• goal(r, g) under DNF has a clause where b appears.

or

• All the roles play in different subgames, and

• goal(r, g) under DNF has a clause where b appears, and
for all roles r′ , r, goal(r′, g′) under DNF has no clause
where b appears.

In games like Dual Rainbow or Dual Hamilton, subgoal-
predicates appear only in the premises of goal rules. Since
these games are composed of single player subgames, an aux-
iliary predicate present in the goal rule of a single player in-
volves only this player and therefore only one subgame.

The first part of the definition holds in the games where
the victory in one of the subgames terminates the game as
it is generally the case in compound games. Otherwise, the
subgames may be connected by the use of a misidentified
subgoal-predicate.

Once a subgoal-predicate is identified, we add edges in
our dependency graph between fluents that appear in a same
clause in its formulas under DNFD.

3.4 Compound moves and meta-action sets
A compound move is composed of two or more ac-
tions related to different subgames. For example, in the
game Asteroid Parallel the compound move legal(ship,
do(clockcounter)) corresponds to a clockwise move in a first
subgame and a counterclockwise move in a second subgame.
Such an action creates a link between the different subgames
and can interfere with the decomposition process.

To detect compound moves, [Zhao et al., 2009] use the
same approach as that applied to the problem of joints move.
For example, in the following rule from Tictactoe Parallel
we can see that only the first two arguments of the action
have an effect on the rule conclusion:
next(cell1(X1,Y1, o)) D does(oplayer,mark(X1,Y1, X2,Y2)).
Once again, the rule has just to be rewritten to defeat detec-
tion: next( f ) D does(oplayer, o).

In games with compound moves, the set of all actions is a
combination of the sets of all actions of each subgame. Then
in a game composed of two subgames, for each action in the
first subgame, there is N compound moves corresponding to
this action combined to the N possible actions in the second
subgame. To identify the different parts of compound moves,
we distribute actions into meta-action sets. An action can
belong to one or several meta-action sets which depend only
on a role r, a fluent f ∈ F and two clauses c ∈ C and c′ ∈ C.

Definition 9 An action a = (r, o) belongs to the meta-action
set P(r, f , c, c′) if:

• f is a potential effect of a, and

• next( f ) under DNFD has a clause (does(r, o) ∧ c), and

• if c′ is empty, legal(r, o) must always be true, or
if c′ is not empty, it contains only action-dependent liter-
als and appears in at least one clause of legal(r, o) under
DNFD.

Therefore a meta-action set is a group of actions with an
identical effect on a fluent of a particular subgame, the same
preconditions in the corresponding next rule and at least one
precondition in common in their legal rules.

For example, in the game Blocks World
Parallel we can find the meta-action set
{does(robot, do(stackstack, a,b, ∗, ∗)), does(robot,
do(stackunstack, a,b, ∗, ∗))}1 corresponding to the ac-
tion stack(a, b) in the first subgame. These actions have
an effect in common on true(on1(a, b)), same preconditions
{true(table1(a)), true(clear1(b)), true(clear1(a))} in the
next(on1(a, b)) clauses and are always legal.

In a game with compound actions, each action is placed
in M meta-action sets corresponding to M effects. If a game
contains no compound action but some actions with an iden-
tical effect in the same situation, these actions are grouped in
the same meta-action set. And finally, if all actions in a game
have a different effect, each one constitutes a meta-action sin-
gleton. The use of meta-action sets is then compatible with
all games.

1the * represents different possible values, the whole meta-action
set contains 12 compound moves
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In our dependency graph, we then encapsulate all actions
into meta-action sets to avoid compound actions from con-
necting different subgames. The links between actions and
fluents are replaced by links between action sets and fluents
i.e. in the dependency graph, edges are added between a
meta-action set and its effect f and preconditions f ′ ∈ c ∪ c′

3.5 Serial games
In serial games an auxiliary predicate describing the termi-
nal situation of the first subgame determines the legality of
all actions of the second subgame. Consequently, it creates
links between first subgame fluents and second subgame ac-
tions. We must detect it and avoid these links to separate both
subgames.

[Zhao, 2009] uses a separate special detection: the de-
sired auxiliary predicate must be false to authorize the first
subgame actions and true to authorize the second ones, like
game1over in Tictactoe Serial:

legal(PLAYER,mark1(X,Y)) D ¬game1over ∧ ... .
legal(PLAYER,mark2(X,Y)) D game1over ∧ ... .

with game1over depending on line1(x) ∨ line1(o) ∨ ¬open1.
However, someone can defeat this approach by simply rewrit-
ing the first subgame legal rules with a different precondi-
tion: legal(PLAYER,mark1(X,Y)) D ongoing1 ∧ ... . with
ongoing1 depending on ¬line1(x) ∧ ¬line1(o) ∧ open1.

To generalize the approach of [Zhao, 2009], we consider
that a pivot between two serial subgames is composed of two
auxiliary predicates that can be the negation of each other or
two completely different predicates. We use our circuit repre-
senting the game to test the influence of each auxiliary pred-
icate detected during the circuit creation on the actions legal-
ity and look for a couple of predicates that parts the fluent-
dependent actions in two groups.

If such a couple of auxiliary predicates is found, then it is
a pivot and the latter predicates are directly used as action
preconditions instead of the fluents included in them. In our
dependency graph, fluents of the first subgame are then en-
capsulated in these auxiliary predicates to ensure that they
will not connect the different subgames with direct links to
actions (meta-action sets) of the second subgame. This ap-
proach works for existing games that are limited to two serial
subgames.

Unfortunately, we cannot generalize this approach and
identify a pivot in case of more than two serial subgames
without risking an over-decomposition of games with mov-
able parts. In a pivot, each auxiliary predicate is necessary to
allow the legality of some actions and may prevent the legal-
ity of other actions. If a third subgame is present, its actions
are not affected by both auxiliary predicates. In a game with
movable pawns, an auxiliary predicate may be used to de-
scribe the state of a cell; this predicate may allow the legality
of some moves from this cell, prevent some moves to this cell
and does not concern other moves of the game, consequently
it may be confused with a part of a pivot. Therefore, if we
try to identify pivots for more than two serial subgames with
a generalization of this approach, a game with movable pawn
may be over-decomposed, each cell being a small serial sub-
game leading to the next ones.

3.6 Multiple games and useless subgames
Some sugames are involved in the calculation of the score or
can cause the end of the game when some position is reached.
A subgame may also be played to allow another subgame to
start in the case of serial subgames.

Definition 10 Let VS be the set of vertices of a connected
part of the dependency graph representing a subgame S . S is
considered useful if:

• S is played before another subgame in a serial game and
is necessary to start it, or

• it exists f ∈ F ∩ VS such that terminal depends on the
logical value of true( f ), or

• it exists f ∈ F ∩ VS such that goal(r, g) depends on the
logical value of true( f ).

In multiple games, all the subgames that are not identified
as useful can be ignored and remain unexplored. However,
a useless action (noop) can be sometime strategically useful
to avoid a zugzwang in another subgame. Actions of these
subgames can then be flagged as noop actions, be consid-
ered equivalently useless, and only one of them need to be
explored (if legal) for each position of the game.

4 Experiments
We evaluated our decomposition program on a panel of 40
descriptions of games, compound or not, from the servers of
Dresden, Stanford and Tiltyard. We took all the available
compound games except for the redundant ones. We added
the original version of games commonly used as subgames
and a representative panel of games with different character-
istics (movable parts, steppers, asymmetry, impartiality) and
complexity. The experiments were run on one core of an Intel
Core i7 2,7GHz with 8Go of 1600MHz DDR3.

For each game, we measured the mean time necessary for
each stage of the decomposition on a set of 100 decomposi-
tion tests. To limit the duration of the experiments, a decom-
position test was aborted after 60 minutes. The longest stages
of the decomposition are grounding the rules, factorizing the
circuit and calculating completely developed disjunctive nor-
mal forms (DNFD). The column 5 of table 1 indicates the
total time needed to decompose each game and shows that
the DNFD calculation can be very time consuming.

We try to compute DNF without developing the auxiliary
predicates identified during the circuit construction. As we
can see it in column 6, the time saved is really significant
and allows the successful decomposition of 32 games among
40 in less than 5 seconds. The major part of the total time
necessary for the decomposition using DNF corresponds to
the rules grounding and circuit factorization.

Unfortunately, the use of partially developed DNF presents
a shortcoming: if a rule containing variables is already instan-
tiated in the original GDL description of a game and if some
of these instances only are expressed in terms of auxiliary
predicates, actions may occur in conjunction with different
but equivalent premises: a group of fluents or an equivalent
auxiliary predicate. The factorization of the circuit should re-
store auxiliary predicates in all rules instances but as we use a
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Hex (T) not decomposed after 1 hour
Blockerparallel (D) not decomposed after 1 hour

Asteroids (D) 2 1 1 <1sec <1sec
Blocks (D) 2 1 1 <1sec <1sec

EightPuzzle (T) 2 1 1 <2sec <2sec
Roshambo2 (D) 2 1 1 <1sec <1sec

Checkers (D) 3 1 1 (1) >1hr <12min
Breakthrough (T) 2 1 (1) <16min <16min

Sheep and wolf (D) 2 1 (1) >1hr <5sec
Tictactoe (S) 2 1 (1) ≈1sec <1sec

Nineboardtictactoe (S) 2 1 (1) >1hr <2sec SG = 9 Tictactoe together
Tictactoex9 (D) 2 1 (1) >1hr <5sec SG = 9 Tictactoe together

Chomp (D) 2 1 (1) <1sec <1sec BWrong decomposition
Multiplehamilton (S) 3 1 (1) 1 <1sec <1sec SG = Hamilton

(only right useful)
Multiplebuttonsandlights (S) 10 1 (9) 1 <1sec <1sec SG = group of buttons

(only no5 useful)
Multipletictactoe (S) 75 1 (72) 1 (1) <10sec <1sec SG = Tictactoe no5

(+ useless SG = cells)
Blockerserial (D) 2 2 <20min <10min SG = Blocker ×2
Dualrainbow (S) 2 2 ≈1min <8sec SG = Rainbow ×2

Asteroidsparallel (D) 3 2 1 <1sec <1sec SG = Asteroid ×2
Blocksworldparallel (D) 3 2 1 ≈1sec ≈1sec SG = Blocks ×2

Dualhamilton (S) 3 2 1 <1sec <1sec SG = Hamilton ×2
Dualhunter (S) 3 2 1 <2sec <2sec SG = Hunter ×2
Incredible (D) 3 2 1 <1sec <1sec SG = Maze et Block

Asteroidsserial (D) 4 2 2 <1sec <1sec SG = Asteroid ×2
Blocksworldserial (D) 4 2 2 <1sec <1sec SG = Blocks ×2

Jointbuttonsandlights (S) 4 3 1 <1sec <1sec SG = 3 groups of buttons
LightsOnParallel (T) 5 4 1 <8min <1sec SG = 4 groups of lights
LightsOnSimul4 (T) 5 4 1 <8min <1sec SG = 4 groups of lights

LightsOnSimultaneous (T) 5 4 1 <8min <1sec SG = 4 groups of lights
Nim3 (D) 5 4 1 <2sec <2sec SG = 4 heaps

+ control useful for goal
Chinook (S) 6 2 2 (2) <14sec <14sec SG = Checkers ×2

Double tictactoe dengji (D) 3 2 (1) >1hr <1sec SG = Tictactoe ×2
SnakeParallel (T) 3 2 (1) >1hr <2sec SG = Snake ×2

TicTacToeParallel (T) 3 2 (1) >1hr ≈2sec SG = Tictactoe ×2
Doubletictactoe (D) 4 2 (2) >1hr <1sec SG = Tictactoe ×2

TicTacHeaven (T) 4 2 (2) >1hr <2sec SG = 9 Tictactoe together
+ 1 isolated

TicTacToeSerial (T) 4 2 (2) >1hr <1sec SG = Tictactoe ×2
ConnectFourSimultaneous (T) 4 2 (2) >1hr <1sec SG = Connect4 ×2

DualConnect4 (T) 4 2 (2) >1hr <1sec SG = Connect4 ×2
Jointconnectfour (S) 4 2 (2) >1hr <1sec SG = Connect4 ×2

Table 1: Result of the decomposition for a panel of 40 games
descriptions from the servers of Dresden (D), Stanford (S)
and Tiltyard (T) with comments on subgames (SG) found.

greedy approach (§3.1), it is not guarantied. Therefore, meta-
action sets detection may be hindered. Nevertheless, this case
is sufficiently specific to successfully use the auxiliary predi-
cates in DNF, in most cases.

For Hex and Blocker Parallel, the time required to com-
pute the grounded rules, the factorization and the DNFs still
remains too large. The factorization does not allow to suffi-
ciently reduce the complexity of Hex and, in Blocker Parallel,
the presence of compound actions combined with joint moves
for both players brings a large number of combinations.

Note that LeJoueur of Jean Noël Vittaut, which won the
2015 Tiltyard Open, is on average 8.5 times faster to ground
and factorize the three most complex games (Breakthrough,
Hex and Blocker Parallel). This indicates the potential scope
for improving these steps.

Table 1 also shows the total number of subgames discov-
ered for each of the 40 games and among them, the ones that
are action-dependent and action-independent. The figures in
parenthesis indicate the number of discovered subgames con-
sidered as useless.

Games at the top of the table are composed of only one
action-dependent subgame and sometimes a stepper detected
as a useful action-independent subgame. The useless action-
independent subgame detected for games like Breakthrough
or Sheep and Wolf corresponds to the control fluents which
indicate the active player in an alternate moves game and does
not represent a playable game per se.

Useless subgames in multiple games are correctly iden-
tified. We remark that for Multiple Tictactoe, the number
of useless subgames is particularly large because these sub-
games have been over-decomposed as no auxiliary predicate
creates a link between their cells.

For the game of Nim, our program has detected an action-
independent subgame not involved in the end of the game (it
is not a stepper) while it is the only subgame useful for the
calculation of the score: this is an important clue indicating
that this game is impartial.

Except for the special case of Chomp, all the detected sub-
games are the expected ones and correspond to what would
have been obtained by a manual decomposition. Chomp is a
example of games on which the heuristics used for the action
effects detection do not work properly. Other actions than eat-
ing the poisoned chocolate square have only implicit negative
effects which are not detected. These actions are considered
as noop actions and would be evaluated as equivalent during
the game: this could not allow the player to prevent the fatal
outcome. Fortunately, such a wrong detection of the action
effects is visible in the resulting dependency graph as a huge
proportion of fluents and actions are isolated vertices. So we
can prevent this error from affecting the game solving.

5 Conclusion and future work

In this paper we presented a general approach for the de-
composition of games described in the Game Description
Language (GDL). Our program decomposes descriptions of
games, compound or not, with any number of players while
addressing the problem of joint moves. It decomposes par-
allel games, games with compound moves and serial games
composed of two subgames. It also identifies steppers, use-
less subgames in multiple games, and unlike previous works,
without relying on syntactic elements that can be eliminated
by simply rewriting GDL rules. We tested our program on 40
games, compound or not, and have decomposed 32 of them
with success in less than 5 seconds which is a time compatible
with GGP competition setups.

Using Meta-action sets is an efficient way to the problem
raised by compound moves (§3.4). However, it requires the
completely developed disjunctive normal form of the next
rules which is computationally expensive. We are seeking
another approach to avoid this need or to minimize it’s com-
putation time. Beside this, we plan to eliminate the ad-hoc
heuristics used to identify action effects (§3.2) and to avoid
over-decomposition (§3.3). We will also address the problem
of the decomposition of more than two sequential subgames.

Finally, using these decomposed games to solve the com-
position problem for any games with any number of players
remains an open problem.
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